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ABSTRACT
We report the computational advances that have enabled the first
micron-scale simulation of a Kelvin-Helmholtz (KH) instability us-
ing molecular dynamics (MD). The advances are in three key areas
for massively parallel computation such as on BlueGene/L (BG/L):
fault tolerance, application kernel optimization, and highly efficient
parallel I/O. In particular, we have developed novel capabilities for
handling hardware parity errors and improving the speed of inter-
atomic force calculations, while achieving near optimal I/O speeds
on BG/L, allowing us to achieve excellent scalability and improve
overall application performance. As a result we have successfully
conducted a 2-billion atom KH simulation amounting to 2.8 CPU-
millennia of run time, including a single, continuous simulation
run in excess of 1.5 CPU-millennia. We have also conducted 9-
billion and 62.5-billion atom KH simulations. The current opti-
mized ddcMD code is benchmarked at 115.1 TFlop/s in our scaling
study and 103.9 TFlop/s in a sustained science run. with an EAM
potential for metal alloys, with additional improvements ongoing.
These improvements enabled us to run the first MD simulations of
micron-scale systems developing the KH instability.

1. INTRODUCTION
With 131,072 CPUs, BlueGene/L (BG/L) at Lawrence Liver-

more National Laboratory is the first and so far the only supercom-
puter in the world to employ over 100,000 processors, holding first
place on the Top-500 list [39]. Recently BG/L has been expanded
to 212,992 CPUs. Achieving the highest levels of performance us-
ing this large number of processors requires not only a well op-
timized application kernel, but also truly scalable solutions that
address issues such as communications overhead, load imbalance,
I/O, and redundant computation. Techniques that are perfectly ad-
equate for 1,000 or even 10,000 CPUs don’t always perform as
expected on 100,000 CPUs. However, scalability is only part of
the challenge of working on BG/L. With such a large number of
processors—at least 10 times more than almost every other cur-
rent supercomputer—hardware failures are a virtual certainty dur-
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ing any substantial job. Without a well designed recovery strategy
hardware failures can substantially impact performance. This situ-
ation is currently unique to BG/L, but it is sure to be encountered
with increasing regularity as chips with 10’s or even 100’s of cores
are used to build future supercomputers with millions of CPUs.

Traditionally, hardware errors have been handled either by the
hardware itself or by the operating system. However, a greater de-
gree of robustness and flexibility can be attained by allowing the
application to participate in the error correcting (handling) process.
The application, with full understanding of the details of the calcu-
lation, can evaluate the impact of the error and decide the most effi-
cient strategy for recovery. Such a software capability leads poten-
tially to a new paradigm in supercomputer design. Relaxed hard-
ware reliability constraints made possible by application-assisted
error recovery makes possible designs using less intrinsically sta-
ble but higher performing or perhaps less expensive components
thus improving the price/performance ratio. To compare the effec-
tiveness of these error recovery techniques we discuss long-running
large-length-scale molecular dynamic (MD) simulations [1] of hy-
drodynamic phenomena (in particular the Kelvin-Helmholtz insta-
bility) with atomistic resolution.

The Kelvin-Helmholtz (KH) instability [6, 2] arises at the inter-
face of fluids in shear flow, and results in the formation of waves
and vortices. Waves formed by KH instabilities are ubiquitous in
nature. Examples include waves on a windblown ocean or sand
dune, swirling cloud billows (see Fig.1), and the vortices of the
Great Red Spot and other storms in Jupiter’s atmosphere. The KH
instability has been studied previously by a variety of means, but

Figure 1: Clouds over Mount Shasta exhibiting a Kelvin-
Helmholtz instability [ 35].



never before using MD with realistic atoms. The growth of the in-
stability in the linear regime has been studied analytically based on
the Navier-Stokes equation [22]. Beyond linear analysis, the phe-
nomenon has been studied numerically using techniques includ-
ing Lattice Boltzmann [42], Smooth Particle Hydrodynamics [19,
24], and Direct Simulation Monte Carlo [40] and other hard-sphere
particle techniques, as well as Navier-Stokes [38, 11, 28, 10, 9].
Hydrodynamic instabilities related to the KH instability have been
studied with MD such as the shedding of vortices from cylinders
in a flowing fluid [29], interface roughening in sandpiles [3], and
the Rayleigh-Taylor instability in which the mushrooming of the
plumes is related to the KH instability [20].

We simulated KH initiation and development at the interface be-
tween two molten metals in micron-scale samples of 2 billion, 9 bil-
lion and 62.5 billion atoms via molecular dynamics. The use of MD
in our work has enabled simulation of fluids where all phenomena
of interest—vortex development, species interdiffusion, interface
tension, and so on—are fully consistent, arising from the force laws
at the atomic level for the copper and aluminum atoms.

In order to achieve extended high performance on massively par-
allel computers one needs: superior processor utilization, efficient
distribution of tasks, and long-term stability without performance
cost. In the rest of the paper we address these needs with: an ef-
ficient implementation of a standard interatomic potential, a robust
particle-based domain decomposition strategy, and an implementa-
tion of application error management.

The paper is organized as follows: In Section 2 we discuss the
creation of hardware-fault tolerant molecular dynamics; In Sec-
tion 3 we describe kernel optimization strategies; In Section 4 we
present performance results via scaling, benchmarks, and a full sci-
ence simulation; In Section 5 we discuss science results obtained
from the analysis of a 2-billion atom simulation; Finally, in Sec-
tion 6 we present our conclusions.

2. HARDWARE-FAULT TOLERANT MD
Micron-scale MD simulation requires the massively-parallel ar-

chitecture of machines such as BG/L, as well as adaptable software
such as ddcMD that can exploit the novel architecture. BlueGene/L
is a massively-parallel scientific computing system developed by
IBM in partnership with the Advanced Simulation and Computing
program (ASC) of the US Department of Energy’s National Nu-
clear Security Agency (NNSA). BG/L’s high-density cellular de-
sign gives very high performance with low cost, power, and cooling
requirements. The 106,496-node (212,992-CPU) system at LLNL
is at this writing the fastest supercomputer in the world, having
achieved a performance of 280.6 TFlop/s on the Linpack bench-
mark in November, 2005 while configured with 131,072 CPUs.

Although system designers have spent considerable effort to max-
imize mean time between failures (MTBF), the enormous num-
ber of processors, interconnects, and other components on BG/L
greatly increases the likelihood of hardware errors. Error rates that
would be unnoticeable in serial computing can become crippling
problems. A component that produces errors at the rate of once ev-
ery 2 or 3 years on a typical desktop machine will cause a failure
on average every 5 minutes on BG/L.

Many techniques to improve or address hardware fault tolerance
have been described and/or implemented. For example the well
known SETI@HOME project [34] uses a job farming/redundant
calculation model to detect and correct faults. Other redundant cal-
culation schemes employ multiple threads on different cores [13],
compiler inserted redundant instructions [31, 32], and even systems
with multiple redundant processors and data buses [41] just to list
a few. Checkpoint or log based rollback schemes [7] offer an al-

ternative to redundancy. Although these techniques all attempt to
mitigate errors at the hardware or system software level, some ap-
plications can also be made fault tolerant through the selection of
an appropriate underlying algorithm [8].

The primary hardware failure mode on BG/L has been transient
parity errors on the L1 cache line. Although most components of
the BG/L memory subsystem can correct single bit parity errors and
detect double bit errors, the L1 cache can only detect single bit er-
rors and is unable to correct them. When running on the 64k-node
BG/L, L1 parity errors occur on average every 8 hours, or approx-
imately once every CPU century. In the 104k-node configuration,
the parity error rates have been higher, nominally occurring every
5 hours but occasionally much more frequently as will be discussed
below. Without assistance from the application, the Compute Node
Kernel (CNK) can only terminate the job and force a reboot of the
machine. At the system level where one corrupted bit is equally
important as any other, there is no other viable strategy that can
guarantee the fidelity of a calculation.

Recovery from a termination is expensive: 1/2 hour to reboot
the machine, 1/4 hour to restart the application from the last check-
point, and on average perhaps 1 hour (half the checkpoint interval)
to redo calculations since the last checkpoint. Hence 1.75 out of
every 5 hours, or nearly 35% of (wall-clock) time is spent in error
recovery. Applications with longer checkpoint intervals will suf-
fer even greater losses. More frequent checkpoints could reduce
the recovery time, but the time spent writing could easily offset the
advantage.

Since supercomputing applications often require days of run time
the error recovery time represents a significant reduction in the
overall computational efficiency. In evaluating the overall perfor-
mance of an application the time spent recovering from errors must
be factored in. Computer time is not budgeted in Flop/s but in wall
clock or CPU hours—time spent either down or repeating calcula-
tions lost to a crash increases the project budget.

2.1 Parity Error Recovery Methods
BG/L provides two methods to mitigate the impact of L1 par-

ity errors. The first option is to force writes through the L1 data
cache directly to lower levels of the memory subsystem. Using
write-through mode provides the opportunity to correct L1 mem-
ory corruption by reading uncorrupted data from the L3 cache or
main memory, but at the cost of degraded performance. The second
option transfers control to an application-supplied interrupt handler
whenever the CNK detects an unrecoverable parity error, thus al-
lowing the application to assist in the error recovery process. By
exploiting detailed knowledge of the application state and/or mem-
ory usage, the application can use this handler to implement highly
efficient recovery strategies that would otherwise be impossible.

Activating write-through mode is very effective at eliminating
parity errors. One of the jobs that generated the data reported in
Section 5 ran without interruption on the 64k-node BG/L for more
than 4 days and logged 12 recovered parity errors. This run repre-
sents over 1.5 CPU millennia without an unrecoverable error. Un-
fortunately, the increase in stability comes with a performance cost.
The cost of write-through mode is application dependent with per-
formance decreases typically in the range of 20–50%. For ddcMD
the performance degradation caused by activating write-through
mode is 20%. Although this is a substantial penalty it is still better
than terminating with errors. Applications with short checkpoint
intervals and high write-through penalties will actually observe a
performance decrease. Clearly write-through mode provides fault
tolerance, but the associated performance penalty provides motiva-
tion to seek other solutions.



To test the effectiveness of application-assisted error recovery
we have implemented a “rally and recover” error handler that uses
fast checkpointing to recover from a parity error. In this strategy
a backup copy of the full state of the atomic system (the posi-
tions and velocities of the atoms) is made in memory every few
time steps. The overhead to keep such a copy is small: only a few
Mbytes per processor. When a parity error occurs the handler sets
an application level flag and instructs the task on which the error
occurred to continue calculating even though data have been cor-
rupted. At designated rally points all tasks check the error flag—if
the flag is set the current results are discarded and all tasks back
up in time by restoring the previously saved positions and veloc-
ities. This scheme differs from checkpoint-based error recovery
systems in that the process of checking and communicating error
status, as well as saving/restoring checkpoints is under the control
of the application rather than the system. This approach avoids the
complications inherent in writing generic recovery code and lever-
ages application specifics to minimize memory requirements and
simplify the code needed to check error states and recover from
checkpoints.

For ddcMD the performance penalty to enable application-assisted
recovery is very small (much less than 1%) This negligible penalty
is due to the cost of saving a second copy of the state and checking
the error flag. In runs with our error handler enabled the time to re-
cover from a parity error was reduced to the time needed to recom-
pute a small number of time steps (typically a second or less), en-
abling ddcMD to run continuously at peak performance over long
periods. Hence, when the application takes some responsibility for
hardware fault recovery it is possible to achieve improved through-
put in addition to fault tolerance. With ddcMD we see a 35% im-
provement (or speedup of 1.5) compared to no error handling or
20% improvement (or speedup of 1.3) compared to write-through
mode. Paradoxically, the code has achieved a higher overall level
of performance by allowing the hardware to make mistakes.

Figure2shows the speedup that can be obtained from application-
assisted error recovery compared to having the application crash
and restart as a function of the crash penalty time (reboot + restart
+ 1/2 checkpoint interval). Note that a factor of two speedup is
a practical limit. Applications with a crash penalty that exceeds
50% of the mean time between failures can limit crash losses using
write-though mode. The current configuration of BG/L has a pre-
dicted to MTBF=5 hours. As processor count increases the MTBF
will decrease if the failure rate remains the same. The other curves
show that benefits of fast error recovery are increased for future
machines with shorter failure times due to larger processor counts.

As machines larger than BG/L are constructed it will become
even more important for applications to be able to assist the hard-
ware in dealing with errors. Robust fault tolerance at the applica-
tion level offers improved efficiencies in both run time and mem-
ory usage than solutions at the OS or hardware levels. Appli-
cation level fault tolerance promises to be easier and more cost-
effective to achieve than the construction of no-fault computers.
Many codes already contain infrastructure to detect and recover
from errors common to numerical simulation such as convergence
failures or failures to satisfy error tolerances. Such code can be
adapted to serve as hardware fault interrupt handlers. We feel that
the ability to run processors in an “unsafe” mode will greatly en-
hance the effective reliability and overall performance of scientific
codes, and pave the way for more aggressive computer design in
the next generation of massively-parallel computers.

3. OPTIMIZATION FOR BLUEGENE/L
We have previously reported [36, 37] performance in excess of
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Figure 2: Speedup obtained from application-assisted parity
error recovery as a function of crash penalty time for three val-
ues of mean time between failures (MTBF): 2, 4, and 8 hours.

100 TFlop/s using ddcMD and the interatomic force law known
as Model Generalized Pseudopotential Theory (MGPT) [26]. The
functional form of MGPT is implemented as a purely classical
many-body interatomic potential that was derived from quantum
mechanics through a series of approximations that retains much of
the many-body character [25]. Even as an approximation, MGPT
requires on the order of a million floating point operations per par-
ticle, making it an extraordinarily expensive potential to compute.
Given this computational burden, much effort was devoted to op-
timizing our implementation of the MGPT potential function. Be-
sides a highly tuned compute kernel, a rather complex neighbor
table algorithm was implemented. The neighbor algorithm tracked
multiple cutoffs and was designed to avoid at all costs the eval-
uation of redundant force and/or energy terms, as well as terms
that would evaluate to zero. By reducing the number of redundant
calculations performed we decreased the “performance” of the ma-
chine as measured by Flop/s but increased the performance as mea-
sured by the most important metric: overall time to solution.

With the less expensive EAM potential we found that it is no
longer optimal to avoid all redundant calculation and communi-
cation. The cost to determine and communicate the parts of the
calculation that are unneeded exceeds the cost of the small number
of extra energy and force calculations. Our communication algo-
rithms are now configurable to yield the fastest time to solution
according to the computational demands of the potential.

Table1 shows performance metrics for various MD codes. As
shown in the table ddcMD updates atom positions at 4 times the rate
of SPaSM for potentials of comparable complexity and cutoff range
on the same number of processors. At an update rate of greater than
20 billion atoms/sec we believe ddcMD to be the fastest MD code
in the world, independent of potential.

In other codes the trade-off between extra calculation and up-
date rate is not always favorable. Referring again to Table1 con-
sider the 16 million atom LAMMPS and the 17 million atom MD-
GRAPE simulations. Both runs are simulating biological systems
of roughly the same size using similar potentials. The most compu-



Atom- Atoms in
Code Machine Cores Potential # Atoms Cutoff (̊A) Updates/sec Flops/atom cutoff TFlop/s
LAMMPS[4] BG/L 65536 LJ 4.0e10 6.86e9 6.28e2 55 4.3
SPaSM[21] BG/L 131072 LJ 3.2e11 5.85 11.24e9 2.42e3 71 27.2
SPaSM[21] BG/L 131072 LJ 3.2e11 11.69 2.50e9 1.92e4 565 48.1
SPaSM[12] BG/L 65536 EAM 6.4e10 4.68 1.65e9 a) 36 a)
ddcMD BG/L 65536 EAM 2.9e09 4.50 6.61e9 5.61e3 31 37.0
ddcMD BG/L 212878 EAM 5.9e09 4.50 20.23e9 5.69e3 31 115.1
ddcMD[37] BG/L 131072 MGPT-U 5.2e08 7.24 1.18e8 9.09e5 77 107.6
MDGRAPE[27] MDGRAPE-3 2304 AMBER 1.4e07 30.00 4.03e7 1.37e6 11,414 55.0
MDGRAPE[14] MDGRAPE-3 4300 AMBER 1.7e07 44.50 4.14e7 b)4.47e6 37,252 185.0
LAMMPS[4] Red Storm 512 CHARMM 1.6e07 c) 1.20e7 a) c) a)
LAMMPS[4] Red Storm 10000 CHARMM 3.2e08 c) 2.19e8 a) c) a)

Table 1: A collection of large scale MD simulations comparing performance measures. Note a) No Flop information is provided in
the reference. Note b) Neither update rates or Flops per atom provide in the reference. Flops per atom was inferred from the Flops
per atoms for the 1.4 × 107 atom MDGRAPE run by scaling with (44.5/30.0)3. This number and Flop rate were used to infer the
update rate. Note c) LAMMPS has no cutoff for the Coulomb field. The short range part of the interaction is cutoff at 10̊A.

tationally demanding part of these simulations is the evaluation of
the Coulomb field, which despite its simple form is expensive due
to the many atoms within its long range. MDGRAPE’s approach is
simply to choose a large cutoff and neglect the contribution of the
far-field part of the Coulomb field. LAMMPS on the other hand
uses the more efficient and accurate particle-particle-particle mesh
method (PPPM) based on Ewald method and FFTs. The PPPM
method retains the far-field part of the Coulomb field and does it
with good computational efficiency. Despite giving up an enor-
mous advantage in peak machine performance (2 TFlop/s on Red
Storm1 vs. 850 TFlops/s on MDGRAPE-3 ), LAMMPS achieves
a time to solution substantially equivalent to MDGRAPE by using
the conventional treatment of the Coulomb interactions.

3.1 Kernel Optimization
Rather than utilize MGPT in the current study of KH instabil-

ity, we employ the widely used EAM potentials for metals [5, 23].
These potentials can be characterized as arising from the addition
of a many-body “embedding energy” term to a standard pair poten-
tial interaction:

E =
X

i

ei + F (ρi)

whereei =
1

2

X
j 6=i

φ(rij) andρi =
X
j 6=i

f(rij)

(1)

The distance between atomsi andj is given byrij , and the func-
tionsf , F andφ depend on the type of atoms interacting and their
nonlinear forms are specified in the definition of the potential. This
potential is computationally inexpensive compared to MGPT, need-
ing only a few thousand floating point operations per particle per
evaluation.

There are numerous opportunities to optimize the performance
of EAM potentials within ddcMD. In this section we will discuss
some of the more important steps that we have taken.

The first opportunity lies in how the potentials are used. Effi-
cient management of the data flow is facilitated by what is, to the
best of our knowledge, a novel approach to the time integration of
the force law in Newton’s equations of motion that we callonepass.
The forceF , derived from the gradient (derivative) of the potential

12 TFlops is the estimated peak performance of 512 pre-2006 Red
Storm cores[30].

energy (1), is used in Newton’s equationF = ma. The equation
is integrated in time to determine how the atoms move. The form
of the potential suggests the conventional implementation that first
loops over the atoms to calculate the EAM density for each atom,
ρi, and then executes a second loop to calculate the energies, forces,
and stresses. The two loops and the need to store temporary vari-
ables leads to a degradation of the pipelining. We observed that it
is possible to calculate the forces in a single loop with a change in
the way that the EAM density is calculated, while maintaining the
second-order accuracy of the integrated equations of motion. The
key point is that the EAM density varies sufficiently slowly that
it is predicted well by a 3-point extrapolation. This extrapolation
permits the calculation of the energies, forces and stresses in a sin-
gle loop based on the approximate density derived from the three
most recent values of the EAM density. Also in the single loop
we include a calculation of the actual EAM density. The approx-
imate and actual EAM densities may be compared and the forces
corrected, if necessary. Unfortunately, the use of the approximate
EAM density does spoil the symplectic quality of the time integra-
tor, a quality that prevents excessive numerical heating and drift of
the total energy; however, through a judicious choice of the extrap-
olation weights, the energy drift may be minimized to a tolerable
level of about 4 meV/ns (thermal drift less than 50◦C/ns, less than
2% of the temperature over a nanosecond).

This onepassimplementation allows the EAM-based code to be
structured as if it were a simple pair potential with a single loop
over all atoms in the force calculation. It is thus comparable to the
LJ codes in Table1,

On the BG/L architecture there are three main issues (other than
communication) to consider when optimizing compute-intensive
codes such as ddcMD and other molecular dynamics implemen-
tations. First, as on all architectures, there is the issue of blocking
and cache level. Lower levels of cache can feed the processor with
greater bandwidth and with less latency. Second, as is the case on
many modern architectures, there is the issue of SIMD code gener-
ation. BlueGene/L has a two-way SIMD ISA and a commensurate
possibility of a two-fold speed-up for scientific codes. Third, there
is the issue of high-precision estimates of operations such as recip-
rocal and square root. Properly scheduled, these instructions can
greatly speed up routines that are dependent upon the calculation
of these functions, which are common in molecular dynamics al-
gorithms.



For each atom the neighbors need to be found, the EAM densi-
ties and energies determined and energies calculated. The forward
prediction of the EAM densities allowed the forces to be calculated
simultaneously with the energies and densities. The time history of
the EAM densities allow for an estimate of the densities at the next
time step.

In the first step for each atom all neighboring atoms within a cut-
off distance (modulo periodic boundary conditions) are identified.
The indices of these atoms are placed in a vectorized list for pro-
cessing by the other routines. Here, there are three impediments to
optimization that had to be overcome. The first is that the atoms
are not so local so as to fall into the L1 cache, therefore the rou-
tine is currently somewhat bandwidth restricted. The second is that
our primary goal in designing the software was to make it portable
and easy to debug, therefore the objects used did not always lend
themselves to SIMDization, and we were hesitant to use assembly
language programming unless performance was simply unaccept-
able without that level of optimization. Finally, most of our tests for
proximity will give a negative result (i.e. most candidate atom pairs
are not within the cutoff distance)—many tests are performed and
very little action is taken when a test is positive. This high miss rate
leads to the evaluation of the branch being a possible bottleneck.

In the next step, we encounter the major computational part of
the code. It involves evaluating the transcendental functions en-
tering the energies and forces. The functionsφ(rij) and f(rij)
and their derivatives in the EAM potential [23] are given analyt-
ically by a combination of exponentials and non-integral powers;
however, for these calculations we replace these representations by
32 term polynomial expansions that re-express the original form
in the domain of interest. The evaluations ofφ(rij) and f(rij)
(and derivatives) in polynomial form are nicely vectorizable (and
SIMDizable). The polynomial evaluation can run at about 60% of
the architecture’s theoretical limit once it is properly unrolled and
scheduled. Specifically, the pair loops were unrolled to a depth of
three. In order to optimize these routines, the most crucial issue was
getting the system to produce the desired SIMD instructions. This
was done through the use of so called “built-ins,” or “intrinsics,”
that generate the desired (assembly) code without placing the bur-
den of details such as register allocation and instruction scheduling
on the programmer. Overall, the energy-force kernel ran at approx-
imately 25% the peak rate.

Although intrinsics are more readable than assembly instructions
and considerably easier to intermix with standard C code, they can
lead to scheduling and instruction selection shortfalls that a pro-
grammer who understands the architecture might not make. For
example, the intrinsics fail to inform the compiler that one piece
of data is in the L1 cache (and, therefore, does not need to be
prefetched) while another is likely to be in main memory and there-
fore could greatly benefit from prefetching. Instead, everything is
scheduled as if it resides in the L1 cache. Further, the load-and-
update instruction, which would likely prove beneficial to the per-
formance of this loop is not used in the generated code.

Another impediment to performance is both architectural and al-
gorithmic in nature. The current construction of the interaction list
produces some atoms with a small neighbor count. Because the
register use-to-use time is at least five cycles in the BG/L architec-
ture, we have to have at least 5 interaction evaluations evaluated
in the same loop in order for the system to proceed at near peak.
More simply said, the evaluation of a single, non-interleaved, par-
ticle interaction will take as long as five interleaved reactions. We
are currently pursuing strategies to optimize the organization of the
neighbor list.

3.2 Particle-Based Domain Decomposition
We retain the innovative domain decomposition algorithm im-

plemented in ddcMD [37], which was central to the outstanding
performance achieved by the code using the expensive MGPT po-
tentials. Our particle-based decomposition strategy allows the pro-
cessors to calculate potential terms between atoms on arbitrarily
separated domains. Domains do not need to be adjacent, they can
be arbitrarily shaped and may even overlap. A domain is defined
only by the position of its center and the collection of particles that
it “owns.” This flexibility has a number of advantages. The typical
strategy used within ddcMD is initially to assign each particle to
the closest domain center, creating a set of domains that approxi-
mates a Voronoi tessellation. The choice of the domain centers will
control the shape of this tessellation and hence the surface to vol-
ume ratio for the domain. It is this ratio for a given decomposition
and choice of potential that set the balance of communication to
computation.

Even though the best surface to volume ratio would optimize
communication cost, load imbalances that may arise (e.g., due to a
non-uniform spatial distribution of particles around voids or cracks)
require more flexibility. The domain centers in ddcMD are not re-
quired to form a lattice—the application is free to choose any set of
domain centers. The flexible domain strategy of ddcMD allows for
the migration of the particles between domains by shifting the do-
main centers. As any change in their positions affects both load
balance and the overall ratio of computation to communication,
shifting domain centers is a convenient way to optimize the over-
all efficiency of the simulation. Given the appropriate metric (such
as overall time spent in MPI barriers) the domains could be shifted
“on-the-fly” in order to maximize efficiency. Currently the domain-
ing is steered dynamically by the user, but it could be implemented
automatically within ddcMD.

For the science runs described here, we have placed the domain
centers on the nodes of an irregular Cartesian grid; i.e. a rectangular
grid in which the grid spacing is varied only in the direction normal
to the Al-Cu interface. This choice was motivated by the geometry
of the Al-Cu system separated by a planar interface and with planar
boundaries that mapped well to a Cartesian grid. Variation of the
irregular mesh in the direction perpendicular to the interface allows
for optimization of load balance, and is set by the user.

3.3 I/O Performance
In addition to optimizing computational performance we have

also taken steps to minimize I/O times. We typically strive to
keep our I/O budget to less than 5% of wall-clock time. For our
62.5-billion atom run this proved especially challenging since each
checkpoint file requires 2.7 TB of I/O. With a 2-hour restart inter-
val this requires a sustained I/O rate of 7.5 GB/sec—at least double
our capability at the start of the project.

The traditional file-per-task I/O model does not scale to 200,000+
tasks on BG/L. Not only is it prohibitively difficult to manage and
analyze data spread over thousands upon thousands of files, it is
painfully slow. The Lustre file system serializes metadata opera-
tions so simple operations such as opening a file or stat-ing a direc-
tory with every task take a few minutes. Also, BG/L’s I/O system
is rather unique. Individual compute nodes cannot access I/O de-
vices directly but rather groups of 64 compute nodes (128 CPUs)
are networked to a single I/O node. In the 104k-node configuration
BG/L has 1664 such I/O nodes. These I/O nodes form a bottleneck
that further reduces the performance of file per task I/O.

We have implemented a scalable I/O model in which tasks are
divided into I/O groups. Each group uses a single file and has a
designated I/O task that is responsible for sending/receiving data



to/from all other tasks in the group via MPI sends and receives.
Furthermore we ensure that the groups and I/O tasks are chosen in
such a way that the I/O tasks are in a one-to-one mapping with the
I/O nodes. With these optimizations we have observed peak I/O
rates of 16 GB/sec for read and 19 GB/sec for write and sustained
rates of 9.3 GB/sec for read and 14.6 GB/sec for write. An entire
2.7 TB checkpoint file can be written in under 3.5 minutes. To our
knowledge, no other supercomputing application has demonstrated
this level of sustained I/O performance.

4. PERFORMANCE
In a perfect world all computing hardware would provide an ac-

curate count of floating point operations and evaluation of perfor-
mance. However, gathering such information on BG/L using hard-
ware alone is difficult for two reasons: First, not all floating point
operations are counted, and second, of those operation that can be
counted it is not possible to count them all simultaneously.

The 440D architecture of BG/L offers a rich set of floating point
operations to manage the two floating point units on the core. There
are two broad classes of floating point (fp) instructions, SISD and
SIMD. SISD operations only use the first floating point unit (fp0).
The second floating point unit (fp1) cannot be accessed indepen-
dently of fp0 and requires the use of the SIMD instructions. The
hardware floating point counter can count four different types of
events, but only one at a time. The first type of event is SISD add
and subtract (type 0); the second is SISD multiply and divide (type
1); the third is the so-called fused multiply-add and its variants
(type 2). These first three event types cover almost all the SISD fp
instructions. The fourth and final type of event is the SIMD fused
multiply-add operation and its variants. The floating point weights
for these count types are 1, 1, 2, and 4, respectively. Other SIMD
floating point operations are not counted, including all of the non-
fused SIMD operation; for example, simple adds and multiplies, as
well as float point negation (multiply by−1.0) are not counted.

The inability to count all floating point operations can result
in an underestimation of performance, especially for highly opti-
mized code that exploits the second floating point unit (fp1). Such
is the case for the kernels used to evaluate the EAM potential in
ddcMD. These kernels have a significant number of fused and non-
fused SIMD operations. It is possible to count instructions in a
basic block of the kernel by looking at the assembler listings. With
knowledge of the iteration count for these blocks, an estimate for
the missing Flops can be made. Fortunately, for the floating point
intensive kernels of the EAM potential the ratio between counted
and non-counted SIMD instruction is fixed for each kernel, and that
ratio can be found by examining the assembler listing. Simple scal-
ing of the hardware SIMD fp count (event type 3) determines this
correction. Overall, we find that a few percent of the Flops are not
counted by the hardware counters. asdfa

Since each task has only one counter it can count only one type
of event at a time. To count all events on all tasks for a given cal-
culation the calculation would need to be run four times, (once for
each fp event/group) and the total floating point count accumulated
at the end. Although this strategy may be feasible for small bench-
mark runs it is impractical for large science runs. Another approach
is to statistically sample the various events by having different tasks
count different events. If we divide the four events types between
four equally sized sets of tasks, then in principle a statistical mea-
sure of the Flop count can be made. This approach is accurate when
each task has the same computational profile, and with our most re-
cent code we have shown that this is the case, giving Flop counts
that agree with the full count to better than 1% (comparable to the
statistical noise in the Flop count).
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Figure 3: Strong scaling results for ddcMD running a 386 mil-
lion atom sample on BlueGene/L. The red line represents per-
fect scaling.
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Figure 4: Weak scaling results for ddcMD running with 45,000
atoms per task on BlueGene/L. The red line represents perfect
scaling.



#Atoms Number of Tasks (k=1024)
(×106) 1k 2k 4k 8k 16k 32k 64k 128k 208k

46.08 0.6 31.7
92.16 1.1 49.1
184.3 2.4 61.4
386.6 0.6 1.1 2.3 4.7 9.4 18.5 34.7 60.6 80.0
737.3 9.4 91.7
1474 18.8 105.6
2949 37.0 111.8
5898 72.8 115.1
9579 115.0

Table 2: Performance of ddcMD on BG/L (TFlop/s) for different system sizes and task counts.

4.1 Scaling Benchmarks
All the benchmarks were run on thin slabs of Cu atoms with

3D periodic boundary conditions. The performance data were col-
lected using the sampling procedure previously described.

The row at 386 million atoms represents a strong scaling study.
Strong scaling is very good up to 64k tasks or about 5000 atoms
per task (see Fig.3). The falloff in performance above 64k tasks is
to be expected given the small number of particles per task—only
about 1700 atoms per task at 208k tasks.

The complete diagonal of Table2 represents a weak-scaling study
(see also Fig.4). The data show almost perfect scaling through the
entire range of 1k through 208k tasks.

ddcMD demonstrates exemplary scaling across the entire ma-
chine. We achieve our highest performance of 115.1 TFlop/s on
208k tasks with a 5.898 billion atom sample.

4.2 Science Run Performance
In this section we discuss the performance of ddcMD during the

initial stages of a simulation modeling the formation and growth of
Kelvin-Helmholtz instabilities. The simulation contains an equal
number of Cu and Al atoms for a total of 9 billion atoms. In order
to achieve the length scales needed for growth of this particular hy-
drodynamic instability we employ a quasi-2D simulation geometry:
2 nm× 12µm× 6 µm. Initially, the system consists of molten Cu
and Al separated by an planar interface perpendicular to thez-axis
at 2.54µm. Periodic boundary conditions are used in thex- and
y-directions with a 1D confining potential in thez-direction.

Because Cu and Al have different number densities the multi-
species problem has a spatially inhomogeneous computational load;
therefore, particular attention must be paid to load-leveling to fully
optimize the simulation. A spatially uniform domain decompo-
sition would suffer a severe load imbalance since the Cu domains
would contain more atoms than the Al domains. We have addressed
this imbalance by choosing a non-uniform domain decomposition
that partitions space based on local pair density (closely related to
atomic number density). In practice the optimized non-uniform de-
composition achieved roughly a 25% performance increase com-
pared to a uniform domain decomposition.

Our 9-billion atom science run logged 212 parity errors in ap-
proximately 171 (wall-clock) hours of total run time. The higher
than anticipated error rate is due to a small number of processors
that generated an abnormally high number of errors. One MPI task
registered 133 errors in a single 6 hour period. Once the high er-
ror rate was discovered the node was replaced; however, even in
this extreme situation ddcMD was able to recover from all of these
errors and continue to run.

Excluding the anomalous 133 errors just discussed, the running

job encountered 79 parity errors during the course of the simula-
tion, each of which would have resulted in a halt and reboot. With-
out error recovery, we estimate that this simulation would have
required an additional 79 hours to complete (using our one-hour
checkpoint interval and the 30 minute reboot time). We see that
application-assisted error recovery reduced the overall wall clock
run time on this run by more than 30%.

The rate of error (79 in 171 hours, or about 1 every 2.1 hrs)
is very high, but the machine is still newly assembled. We can
estimate the steady-state parity error rate by taking only one parity
error per unique MPI task number. This count (33 in 171 hours,
or about 1 every 5.1 hrs) agrees very well with the predicted rate
of one error every five hours. We expect that the observed error
rate will settle into this figure once the new hardware added during
the recent reconfiguration is fully burned in. Using this estimate,
we can anticipate that in the long term, application-assisted error
recovery will reduce wall clock time for ddcMD by an average of
16%.

We measure the performance of ddcMD using the hardware coun-
ters provided by the kernel to sample the four classes of floating
point operations in a single run, as described above. The coun-
ters tallied the following events over a 10,000 step segment:n0 =
1.520×1016 type 0,n1 = 0.947×1016 type 1,n2 = 4.696×1016

type 2 andn3 = 6.489×1016 type 3 events in 3667 seconds. Using
the appropriate weights for each type, we calculate a total of

n0 + n1 + 2n2 + 4n3 = 3.782× 1017

floating point operations, for an aggregate performance of 103.1
TFlop/s. As mentioned above the counters do not count all the
floating point operations; an analysis of the assembly listing reveals
for every 62 events counted by the type 3 counter we miss one
floating point operation of weight two. Applying this correction
(n3 × 2/62) we calculate our performance to be 103.9 TFlop/s.

5. SIMULATION RESULTS
The science results presented in the this section are from an study

of the feasibility of simulating the onset and growth of KH insta-
bilities on the micron scale with atomic resolution. In addition to
this 2-billion atom simulation, we have recently completed a quasi-
2D 9-billion atom simulation and we have a fully 3D 62.5-billion
atom simulation (representing 1 cubic micron) underway. These
simulations have successfully demonstrated the feasibility of the
atomistic approach and have provided a wealth of physical science
insight. Although the floating point performance of the initial 2-
billion atom simulation was substantially less than the more recent
simulations, we focus on it because the computational length of the
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Figure 5: Evolution of Kelvin-Helmholtz instability modeled using molecular dynamics. The color indicates the local density, with
red the density of copper and blue the density of aluminum. Only the region near the interface is shown. The fluid flows to the
right at the top, and to the left at the bottom of each panel. The frames to the right enlarge the outlined rectangular region in the
corresponding panel to the left.

simulation (2.8 CPU millennia) is unparalleled and we have had the
opportunity to complete the analysis.

The Kelvin-Helmholtz (KH) instability produces wave patterns
at the interface between two fluid layers that are experiencing shear
flow. Although the development of the KH instability and the tran-
sition from smooth to turbulent flow have been extensively studied,
the trend towards smaller and smaller length scales in both exper-
iments and continuum modeling raises questions concerning the
applicability of the hydrodynamic approximation as atomic lengths
are approached.

The understanding of how matter transitions from an effectively
continuous medium at macroscopic length scales to a discrete atom-
istic medium at the nanoscale is the subject of vigorous academic
investigation. Many scientists are pursuing the fundamental ques-
tion of how far down in size continuum laws apply [33]. This ques-
tion is not just the subject of arcane academic debate: applications
such as the National Ignition Facility are producing gradients on ex-
tremely short temporal and spatial scales while nanotechnologists
are studying flow through carbon nanotubes and other systems in
which the fluids are but a few atoms thick [16]. Can these phenom-
ena be understood using continuum analysis? What would be the
signature that these fluids are discrete? No one has a good answer.

In continuum hydrodynamics simulations the macroscopic prop-
erties of matter such as pressure, temperature, and flow fields are

defined as the collective properties of a sufficiently large ensemble
of atoms. Continuum equations such as the Navier-Stokes equation
are derived from conservation laws assuming that field gradients
are small and that material properties change slowly compared to
atomic length and time scales. Although the Navier-Stokes equa-
tion provides a very powerful description of the continuum limit it
is predicated on an asymptotic analysis. If the gradients become too
large, there is no way to fix Navier-Stokes by adding higher order
terms in the gradients to construct a convergent series—the math
does not work that way. The situation is even more complicated in
fluids due to their chaotic nature.

In contrast to hydrodynamics, molecular dynamics (MD) utilizes
no direct continuum-level input. Instead of a continuum constitu-
tive law, MD is based on an interatomic force law. Properties such
as the equation of state (density as a function of temperature and
pressure), transport coefficients such as the diffusivity and the vis-
cosity, and interfacial properties such as the surface tension arise
naturally from these underlying atomic forces. Additionally, with
a suitable time step MD is unconditionally stable, as the system
is evolved using an explicit time integrator. MD is fully resolved
by nature—there is no mesh size to adjust, and no gradient is too
steep. Inter-diffusion at interfaces is physical, not a numerical ar-
tifact. Numerically, MD simulation is the gold standard. Unlike a
hydrodynamic simulation, where the challenge is to add sufficient



Figure 6: This y-t diagram shows the time evolution of the mass distribution iny, colored such that red indicates a high mass (more
copper) and the blue a lower mass (more aluminum). This roughly corresponds to the location of the interface as shown in Fig.5,
with red (blue) indicating a higher (lower) interface. The large swaths of red and yellow indicate large Kelvin-Helmholtz waves,
whereas the smaller streaks of yellow at a lower angle indicate material such as in the ligaments being swept from the KH waves.
The increase in structure size with time is quite evident as the short wavelength modes at earlier times (bottom of figure) evolve into
longer wavelength modes.

degrees of freedom to obtain a converged result, the challenge for
MD has always been to overcome the constraints on system size
and simulation length imposed by computational resources.

We have used the ddcMD code to simulate the development of
the Kelvin-Helmholtz instability at an interface between two differ-
ent kinds of molten metal flowing in opposite directions, as shown
in Fig.5. The initial atomic configuration was constructed in a sim-
ulation box 2 nm× 5 µm × 2.9 µm in size containing two types
of atoms with a total of 2×109 atoms (1 billion of each type). The
configurations of the 9-billion and 62.5-billion atom systems are
similar: 2 nm× 12 µm × 6 µm and 2µm × 1 µm × 0.5 µm,
respectively, with equal numbers of Cu and Al atoms. Even in the
quasi-2D simulations the atoms are free to exhibit 3D motion. Peri-
odic boundary conditions were used in thex- andy-directions; i.e.,
the thin direction into the page and the horizontal flow direction in
Fig. 5. The third dimension,z, was not periodic: a static potential
based on the atomic pair potential was used to confine the atoms.
The initial velocity of each atom was selected at random from a
Boltzmann thermal distribution to give a temperature of∼2000K
in the local rest frame of its fluid, and the two fluids were given
an initial relative velocity of 2000 m/s. This step-function initial
velocity profile sets up a strong shear layer at the flat interface be-

tween the two metals, which is known to be unstable against the
growth of small perturbations.

The atomic system was chosen to simulate molten copper and
aluminum. Both types of atoms interact with forces derived from
a classical EAM potential. In the 2-billion atom simulation a com-
mon EAM potential for copper was used to simulate the interatomic
forces for both types of metals [17, 18], and the masses of half the
atoms were taken to be a third of that of the copper atoms in order
to give a fluid density approximating that of aluminum. In the 9-
billion and 62.5-billion atom simulations we have employed a more
realistic Cu-Al alloy potential[23]. The results from these simula-
tions will be reported in a future publication.2

Newton’s equations (F = ma) based on the EAM force law
were integrated in time using an explicit time integrator with a time
step of2 × 10−15 s. The system was evolved for over 680,000
time steps, giving a simulated period of over 1.3 nanoseconds. The

2The 9-billion atom simulation has run for slightly more simulation
time than the 2-billion atom simulation, and preliminary analysis
has shown that the development of the KH instability is in general
agreement with that observed in the 2-billion atom simulation re-
ported here. The 62.5-billion atom simulation is designed to probe
different aspects of the KH instability, and it is ongoing.
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Figure 7: Kelvin-Helmholtz length scales as a function of time.
Three relevant length scales of the KH development are plot-
ted, one of which is plotted in two ways. The mass and velocity
thicknesses are plotted as a function of time (as defined in the
text), indicating the vertical thickness of the interface as plotted
in the snapshots in Fig.5. Also the dominant length scale along
the interface is plotted in two ways: first, the line segments indi-
cate the size of the dominant wavelength in the Fourier trans-
form of the mass profile in y; second, the solid curve repre-
sents the weighted average of the sizes of the 10 largest peaks in
the Fourier transform of the mass function, providing a more
smooth representation of the lateral size growth. After an ini-
tial diffusive regime, followed by a transient regime, the system
enters into a self-similar growth regime in which the aspect ra-
tio of the vortex structures remains constant.

volume and the number of atoms were held constant. No thermostat
or velocistat was used; the flow velocity was maintained by inertia,
remaining at∼2000 m/s throughout the simulation.

The effect of the KH instability on the interface is quite pro-
nounced, as shown in Fig.5. Initially, atomic-level inter-diffusion
leads to a broadening of the interface. This inter-diffusion layer
maintains a flat interface on the average, but atomic-level thermal
fluctuations perturb the interface and trigger the growth of wave
structures. These structures grow in amplitude and eventually crest
to form micron-scale vortices. As the KH instability grows verti-
cally, the characteristic wavelength of the waves and vortices grows
in the direction of the flow as well. Initially short wavelength
modes grow, but ultimately the larger structures grow at the expense
of the small ones. This ripening may be seen in Fig.6, in which the
evolution of the interface height with time is plotted. A similar plot
has been used to analyze shock-accelerated interfaces [15]. The
initial short wavelength structure evolves into the much larger vor-
tex structures as evident from the broad bands, with fine structure
arising from the ligaments and other material transport processes in
the vortices. We have analyzed the growth effects quantitatively by
calculating the interface width, both in terms of the material pro-
file and the velocity profile. In particular, generalizations of the

momentum thickness formula were used,

Tu = 6

Z
u− u0

u1 − u0

u1 − u

u1 − u0
dz, (2)

whereu(z) is the profile of a function averaged overx andy, with
far field valuesu0 andu1. We have also calculated the principal
feature size of the interface both as the size associated with the
dominant peak in the Fourier transform of the mass functionm(y),
and as the weighted average of the sizes associated with the 10
largest peaks. These quantities are plotted in Fig.7. Early in time,
the interface grows in a regime associated with momentum diffu-
sion, in which the interface widths (both the velocity and density
thicknesses) grow as the square root of time. The interface devel-
opment then passes through a transient regime until at late times
self-similar growth appears to set in, where the interface widths
and the dominant structure sizes grow with the same power-law ex-
ponent (∼1.2) so that the aspect ratio of the vortices is maintained
at approximately two to one. The spectrum of fluctuations that ini-
tiates this growth is at the atomistic level due to thermal agitation,
but the momentum diffusion and vortex regimes are characteris-
tic of continuum hydrodynamic behavior. These simulations have
therefore spanned physics at the atomic level to continuum hydro-
dynamic length scales.

6. CONCLUSIONS
These simulations have opened the door to many possibilities for

studying the various physical processes associated with the Kelvin-
Helmholtz instability at length scales spanning atomic to contin-
uum hydrodynamic levels. The ddcMD code, with its particle-
based domain decomposition and highly refined kernel, has pro-
vided the performance needed to make efficient use of BG/L. With
the trapping of hardware errors demonstrated here we show that
stability on modern massively parallel machines can be extended
to unprecedented levels without a significant loss of performance.

This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Laboratory
in part under Contract W-7405-Eng-48 and in part under Contract
DE-AC52-07NA27344.
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