Assessing trends in the electrical efficiency of computation over time

Jonathan G. Koomey, Ph.D.

Consulting Professor, Stanford University
http://www.koomey.com
Presented at LLNL, Livermore, CA November 16, 2010

Alternate title: Why we can expect ever more amazing mobile computing devices in coming decades

Jonathan G. Koomey, Ph.D.

Consulting Professor, Stanford University
http://www.koomey.com
Presented at LLNL, Livermore, CA
November 16, 2010

The key result: computations per kWh have doubled every 1.6 years since the 1940 s

Koomey, Jonathan G., Stephen Berard, Marla Sanchez, and Henry Wong. 2009b. Assessing trends in the electrical efficiency of computation over time. Oakland, CA: Analytics Press. August 17. http://www.intel.com/pressroom/kits/ecotech. In Press at the IEEE Annals of the History of Computing as of May 2010.

Moore's law

- Not a "law" but an empirical observation about components/chip
- 1965: doubling every year
- 1975: doubling every 2 years
- Characterizes economics of chip production, not physical limits
- Often imprecisely cited, interpretations changed over time (Mollick 2006)

Moore's original graph

Transistors/chip (000s)

The doubling time from 1971 to 2006 is about 1.8 years. Data source: James Larus, Microsoft Corporation.

Origins of this work

- I initially thought to replicate my recent work on costs, energy, and performance trends in servers (Koomey et al. 2009a), for computing more generally
- Discovering Nordhaus (2007) led me to reorient my research
- He analyzed costs and performance
- I focused on energy and performance

First I made this graph

Then I made this one

Computations per kWh

But this one really got me to investigate

Method

- Computations per kWh =

Number of computations per hour at full load
Measured electricity consumption per hour at full load (kWh)

Data

- Performance from Nordhaus (2007) or normalized to that source using benchmarks for more recent computers
- Used measured power data, either published (e.g. Weik 1955, 1961, 1964) or from archival or recent computers
- with computer fully utilized
- with screen power subtracted for portables

Performance trends

- Performance trends with real software \neq performance trends from benchmarks \neq transistor trends!
- Doubling time for performance per computer $=1.5$ years in the PC era

Performance trends (2): Computations/s/computer

Because that's where the computers are...

- Power measurements conducted at
- Microsoft computer archives
- Lawrence Berkeley National Laboratory
- My in-laws' basement
- Erik Klein's computer archives
- Computer History Museum's web sites and discussion forums

An oldie but a goodie

And another

Still another

Erik Klein, computer history buff

Good correlation, clear results

- R^{2} for computations/kWh
- 0.983 for all computers, 1946-2009
- 0.970 for PCs, 1975-2009
- Doubling time for computations/kWh
- All computers: 1.6 years
- PCs: 1.5 years
- Vacuum tubes: 1.35 years
- Big jump from tubes to transistors

Computing efficiency trends

Efficiency trends: PCs only

Implications

- Actions taken to improve performance also improve computations per kWh
- Transistors: Smaller, shorter distance source to drain, fewer electrons
- Tubes: Smaller, lower capacitance
- Trends make mobile and distributed computing ever more feasible (battery life doubles every 1.5 years at constant computing power)

Laptops growing fast (world installed base, billions)

Sources-1985: Arstechnica + Koomey calcs 1996-2008: IDC 24

An example of mobile computing enabled by efficiency

- Compacts trash 5 x
- Sends text message when full
- PC panel uses ambient light
- An economic and environmental home run
http://www.bigbellysolar.com

Implications (2)

- We're far from Feynman's theoretical limit for computations/kWh
- 1985: Factor of 10^{11} potential
- 1985 to 2009: Improvement of $<10^{5}$
- Assuming trends in chips continue for next 5-10 years, significant efficiency improvements still to come

Future work

- Add more laptops to the data set (also PDAs, perhaps game consoles)
- Investigate how trends might differ between mainframes, PCs, PDAs, laptops, and servers
- Are power and performance trends for low-end chips different than for the most sophisticated CPUs?
- Real world performance vs. benchmarks

Clock speed and Moore's law

Data source: James Larus, Microsoft Corporation.

A complexity: multiple cores

Big unanswered questions

- Are there technological innovations (software or hardware) that could allow us to substantially exceed the historical trend in the electrical efficiency of computation?
- What roadblocks might prevent these trends from continuing after the current innovation pipeline is exhausted?

Conclusions

- Quantitative results
- In the PC era (1976-2009) performance per computer and computations per kWh doubled every 1.5 years
- From ENIAC to the present, computations per kWh doubled every 1.6 years
- Performance and efficiency improvements inextricably linked.
- Still far from theoretical limits
- Big implications for mobile technologies

References

- Feynman, Richard P. 2001. The Pleasure of Finding Things Out: The Best Short Works of Richard P. Feynman. London, UK: Penguin Books.
- Koomey, Jonathan G., Christian Belady, Michael Patterson, Anthony Santos, and Klaus-Dieter Lange. 2009a. Assessing trends over time in performance, costs, and energy use for servers. Oakland, CA: Analytics Press. August 17. <http://www.intel.com/pressroom/kits/ ecotech>. In press at IEEE Annals of the History of Computing.
- Koomey, Jonathan G., Stephen Berard, Marla Sanchez, and Henry Wong. 2009b. Assessing trends in the electrical efficiency of computation over time. Oakland, CA: Analytics Press. August 17. http://www.intel.com/pressroom/kits/ecotech
- Mollick, Ethan. 2006. "Establishing Moore's Law." IEEE Annals of the History of Computing (Published by the IEEE Computer Society). JulySeptember. pp. 62-75.

References (2)

- Moore, Gordon E. 1965. "Cramming more components onto integrated circuits." In Electronics. April 19.
- Moore, Gordon E. 1975. "Progress in Digital Integrated Electronics." IEEE, IEDM Tech Digest. pp. 11-13. http://www.ieee.org/
- Nordhaus, William D. 2007. "Two Centuries of Productivity Growth in Computing." The Journal of Economic History. vol. 67, no. 1. March. pp. 128-159. http://nordhaus.econ.yale.edu/recent_stuff.html
- Weik, Martin H. 1955. A Survey of Domestic Electronic Digital Computing Systems. Aberdeen Proving Ground, Maryland: Ballistic Research Laboratories. Report No. 971. December. http://ed-thelen.org/comp-hist/BRL.html
- Weik, Martin H. 1961. A Third Survey of Domestic Electronic Digital Computing Systems. Aberdeen Proving Ground, Maryland: Ballistic Research Laboratories. Report No. 1115. March. http://ed-thelen.org/comp-hist/BRL61.html
- Weik, Martin H. 1964. A Fourth Survey of Domestic Electronic Digital Computing Systems (Supplement to the Third Survey). Aberdeen Proving Ground, Maryland: Ballistic Research Laboratories. Report No. 1227. January. <http:// ed-thelen.org/comp-hist/BRL64.html>

