The August 24, 2014 South Napa Earthquake: What Is Known So Far, Accessing Open Information And Preliminary Ground Motion Simulations

Arthur Rodgers Seismology Group, AEED, PLS and Geophysical Monitoring Program, N-Program, GS

September 17, 2014

LLNL-PRES-660621

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Co-workers & acknowledgements

LLNL

- Anders Petersson & Bjorn Sjogreen SW4
- Arben Pitarka spectral acceleration comparisons
- Rob Mellors geodetic data
- LC, Comp access to HPC
- UC Berkeley
 - Prof. Doug Dreger and students source model
 - Doug Neuhauser access to NCEDC data
 - Ingrid Johanson & Mong-Han Huang geodetic data
- United States Geological Survey
 - Brad Aagaard, Jack Boatwright (Menlo Park)
 - Rob Graves (Pasadena)

Outline

Background

- South Napa earthquake fact sheet
- Overview of seismic hazard in the San Francisco Bay Area
- Overview of the South Napa earthquake
 - Accessing openly available information after an earthquake
 - Seismological details emerge ...
- Simulations of ground motions using SW4 on LLNL's HPC

South Napa Earthquake Fact Sheet

- August 24, 2014 3:20:44 local (10:20:44 UTC)
- Ruptured surface ~12 km along West Napa Fault
 - Hypocenter southwest of Napa
- Caused (much) greater than \$100M damage
 - More than 50 buildings red-tagged, 100 yellow-tagged
- I fatality, over 100 injuries
- Tested current systems for real-time monitoring and rapid response
- Large enough to cause wide-spread damage
 - But no where near the devastation expected for an M ~ 7 Hayward, Rodgers Creek or San Andreas earthquake

Geology matters ... east vs. west US

M6.0 earthquake Central California Sept. 28, 2004

> **M5.8 earthquake** *Central Virginia* Aug. 23, 2011

Stars show epicenters and dots show where people reported at least weak shaking.

Lawrence Livermore National Laboratory

Engineering, building design and construction practice matter ...

CALIFORNIA

Deaths: 0

 So. Napa M 6.0 Yunnan, China M 6.1

Compares recent M ~ 6 earthquakes in the US and China

http://www.vox.com/2014/8/26/6069921/watch-what-a-6-magnitude-earthquake-does-in-china-vs-the-us

Lawrence Livermore National Laboratory

Deaths: 619

Homes destroyed: 4

Earthquake Probabilities in SF Bay Area

63% chance for one or more M_W 6.7 or greater events between 2007 and 2036

Hayward & Rodgers Creek Faults are the most likely (31%)

Citation:

The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2)

2007 Working Group on California Earthquake Probabilities USGS Open File Report 2007-1437

Population is exposed to hazard

Lawrence Livermore National Laboratory

Focusing on SF North Bay

West Napa Fault not on this map of "major" faults

The West Napa Fault was identified as active, capable of M 6 event

The Sep. 3, 2000 M 5.1 Yountville Earthquake

Produced strong shaking in Napa Valley, especially in sedimentfilled alluvium geologies

ShakeMap – provides rapid broadcast of ground shaking everywhere near the event, based on recorded data, expected behavior and some geologic structure

PROCESSED: Tue Jul 24, 2001 11:08:48 AM PDT,

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL INTENSITY	I	-	IV	V	VI	VII	VIII	IX	Х+

The Aug. 24 2014 M 6.0 South NapaEarthquakeCISN ShakeMap : 6.4 km (4.0 mi) NW of American CanyonAug 24, 2014 03:20:44 AM PDT M 6.0 N38.22 W122.31 Depth: 11.7km

Produced strong shaking in Napa Valley, especially in sedimentfilled alluium geologies

ShakeMap evolves over time as details emerge

CISN ShakeMap : 6.4 km (4.0 mi) NW of American Canyon, CA Aug 24, 2014 03:20:44 AM PDT M 6.0 N38.22 W122.31 Depth: 11.7km ID:72282711 39° Cloverdale Rosevill Sacramento 38.5° Santa Rosa Vacaville Lodi 38° Stockton San Franciso Tracy $\stackrel{ riangle}{\mathsf{km}}$ 50 37.5° -123° -122°

Map Version 29 Processed 2014-09-03 02:27:06 PM PDT

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<0.1	0.5	2.4	6.7	13	24	44	83	>156
PEAK VEL.(cm/s)	<0.07	0.4	1.9	5.8	11	22	43	83	>160
INSTRUMENTAL INTENSITY	I	-	IV	V	VI	VII	VIII	IX	Х+

Lawrence Livermore National Labora

Scale based upon Wald, et al.; 1999

Mainshock location, mechanism and surface rupture

Mechanism from BSL, Prof. Doug Dreger

38°30

Possible directions of slip

Events are routinely and automatically located by the Northern California Seismic System, operated by UCB and USGS

Surface rupture mapped by Prof. Mike Oskin (UCD)

Lawrence Livermore National Laboratory

Mainshock and aftershock locations and mechanisms with surface rupture

Lawrence Livermore National Laboratory

Openly available, rapid information from USGS web pages

- USGS National Earthquake Information Center
 - <u>http://earthquake.usgs.gov/earthquakes/map/</u>
- Event page
 - Summary information about events
 - When, where, how big ...
 - ShakeMap intensity of shaking
 - http://earthquake.usgs.gov/earthquakes/shakemap/
 - PAGER Prompt Assessment of Global Earthquakes for Response
 - <u>http://earthquake.usgs.gov/earthquakes/pager/</u>
 - DYFI "Did You Feel It?"
 - http://earthquake.usgs.gov/earthquakes/dyfi/

ShakeMap

Produced strong shaking in Napa Valley, especially in sedimentfilled alluvium geologies

ShakeMap – provides rapid broadcast of ground shaking everywhere near the event, based on recorded data, expected behavior and some geologic structure

CISN ShakeMap : 6.4 km (4.0 mi) NW of American Canyon, CA Aug 24, 2014 03:20:44 AM PDT M 6.0 N38.22 W122.31 Depth: 11.7km ID:72282711

PERCEIVED SHAKING Not felt Weak Light Moderate Strong Very strong Severe Violent Extreme POTENTIAL Very light Very Heavy none none none Light Moderate Mod./Heavy Heavy PEAK ACC.(%a) <0.1 0.5 2.4 6.7 13 24 44 83 >156 <0.07 0.4 1.9 >160 PEAK VEL.(cm/s) 5.8 11 22 43 83 INSTRUMENTAL INTENSITY 11-111 IV V VI VII VIII IX **X**+

Scale based upon Wald, et al.; 1999

PAGER

Combines ShakeMap ground motion estimates with population exposure

Provides estimate of fatalities and economic losses

Did You Feel it? DYFI

Based on internet reports at DYFI website

Estimates Modified Mercalli Intensity (MMI) based on reported shaking intensity

Geo-coded by ZIP code

USGS Community Internet Intensity Map

NORTHERN CALIFORNIA

Processed: Tue Sep 16 18:07:11 2014

Did You Feel it? DYFI (zoom)

Some ZIP codes provide strange results ...

Processed: Tue Sep 16 18:07:42 2014

Did You Feel it? DYFI: looking at your SGS Community Internet Intensity Map NORTHERN CALIFORNIA Aug 24 2014 03:20:44 AM local 38.2202N 122.3128W M6.0 Depth: 11 km ID:nc72282711

Earthquake Early Warning (EEW): How it works (1)

P-wave (first felt)

S-wave |(damaging)

Earthquake Early Warning Basics

 In an earthquake, a rupturing fault sends out different types of waves. The fast-moving P-wave is first to arrive, but damage is caused by the slower S-waves and later-arriving surface waves.

- 2 Sensors detect the P-wave and immediately transmit data to an earthquake alert center where the location and size of the quake are determined and updated as more data become available.
- 3 A message from the alert center is immediately transmitted to your computer or mobile phone, which calculates the expected intensity and arrival time of shaking at your location.

EEW worked well for the South Napa earthquake

http://www.youtube.com/watch?v=muXhT3FTrJI http://newscenter.berkeley.edu/2014/09/04/time-for-statewide-earthquake-early-warning-system-is-now/

More distributed sensors will help EEW

Jawbone® activity monitor data show how quake woke up SF Bay Area

Further geologic, seismological & geophysical data and models emerged ...

Geodetic displacements observed by permanent GPS stations

Solutions from 5 Minute Sample Rate Time Series Available Day After Earthquake Solutions from 24 Hour Sample Rate Time Series Available 2 Days After Earthquake

Satellite geodesy: InSAR (Interferometric Synthetic Aperture Radar) – big picture

UAVSAR system - allows timely, detailed view

Lawrence Livermore National Laboratory

30502

Comparison of surface and sub-surface slip

50 40 Offset (cm) Observed surface slip 30 (several researchers) 20 10 1.2 Inferred sub-surface slip 0.8 **Depth (km)** From GPS geodetic data Slip (m) Slip (Bill Barnhart, USGS) 0.4 10 12 0.2 14 -122.38W -122.27W 38.39N 38.11N

Slip measurements: Morelan, Trexler, Brooks, Hudnut, Lienkamper. Model: Barnhart

Springs near Green Valley Fault activated by the earthquake

Lawrence Livermore National Laboratory

Computer Simulations of Ground Motion using LLNL's SW4 code on LC HPC

The pieces for 3D ground motion simulation WPP & SW4 $\rho \frac{\partial^2 u}{\partial t^2}$

- Wave propagation method & code
- 3D Earth model
- Source model
- High-performance computers
- Data to evaluate and validate the numerical method and the 3D model

Lawrence Livermore National Laboratory

We use SW4 – LLNL's anelastic finite difference code for seismic simulations

- SW4 is based on summation-by-parts algorithm
 - displacement formulation, proven energy stability, parallel
- Uses 4th order scheme in space and time
 - WPP used a 2nd order scheme
 - Improved behavior with higher v_P/v_S (< 5) ratios
- Verified against canonical problems
- Includes
 - Anelastic attenuation ($Q_P \& Q_S$)
 - Surface topography
 - Various ways to specify sources & 3D material model

Computational Domain

Dimensions: 50 km x 50 km x 30 km centered on event hypocenter

Grid spacing, h = 50 m Number of grid points: ~ 0.5 billion Miminum wavespeed, vsmin = 400 m/s Maximum frequency = 1 Hz (8 PPW)

Stations:

BK, NC, GPS network sites (white triangles) grid w/ 5 km spacing (black triangles) ource ~

EVENT: 72282711 2014/08/24 10:20:44.03 $M_w = 6.02$ Domain X: 50000 Y: 50000 Z: 30000 h: 50 (meters) $v_{Smin} = 400 \text{ m/s}$; PPW: 8 ; f_{max} = 1 Hz

Simulations investigate how various factors impact the ground motion

Source model

- Point source, BSL moment tensor (Dreger et al.)
 - Full moment tensor or double couple (strike, dip, rake)
- Finite slip model (Dreger)
- Material model
 - 1D (average GIL7 model of Dreger, Pasyanos et al.)
 - 3D Etree model (USGS, Brocher, Aagaard, Jachens et al.)
- Attenuation is included in these simulations
 - 3D Q from USGS ETREE model (version 08)
- Topography

Sub-surface material model: USGS 3D etree-formatted model

USGS 3D sub-surface material model: shear velocities at surface and depth

Lawrence Livermore National Laboratory

Sub-surface material model: comparison of depth profiles from USGS 3D & 1D (BBP)

Geography near the event, with topography and vs at surface

"Basin" depth (depth to $v_s = 1000 \text{ m/s}$)

Basin depth in Napa Valley approaches 1000 m

Note sharp drop in basement depth near South Napa earthquake rupture

Sediment thickness > 1000 m under San Pablo Bay

East Bay Hills (east of Hayward Fault) has low wavespeed

Basin depth (v_s = 1000 m/s) close-up near Napa shows sharp features

Basin depth in Napa Valley is greater than 1000 m

Note sharp drop in basement depth near southern end of South Napa earthquake rupture

Sediment thickness > 1000 m under San Pablo Bay

Lawrence Livermore National Laboratory

Mainshock: Doug Dreger's finite source model

ShakeMap (Peak Ground Velocity) reported (left) and simulated (right)

RUN: 72282711.SLIP.3D_ETREE.TOPO.Q.400.100.SW4

Mainshock waveform comparisons: station by station

Source model is Dreger (2014) finite slip model from BK strong motion

Data & Synthetic

Both filtered 0.1-1.0 Hz Plotted vertical, north & east

Stations shown in following clockwise from NHC

Mainshock waveform comparisons

Mainshock waveform comparisons

comp.

Station NC.N019 6 km

Mainshock waveform comparisons Model: 1D_BBP (left) & 3D_ETREE (right)

Station NC.N016 4 km

Mainshock waveform comparisons

3D model fits duration and late arriving energy better than 1D

Station NC.C032 21 km

Mainshock waveform comparisons

Quantitative comparison of data and synthetics for 1D and 3D models

Aftershock Aug. 26, 2014 12:33:16 GMT (Evid = 72284586, M_w 3.9)

Source model is BSL moment 3830 tensor

Data & Synthetic Both filtered 0.1-1.0 Hz Plotted vertical, north & east

Stations shown in following clockwise from NHC

Aftershock waveform comparisons

Aftershock waveform comparisons

Lawrence Livermore National Laboratory

Aftershock waveform comparisons Model: 1D_BBP (left) & 3D_ETREE (right)

Station NC.N016 18 km

Aftershock waveform comparisons Model: 1D_BBP (left) & 3D_ETREE (right)

RELATIVE MODE

Station NC.NCC

RELATIVE MODE

Observed (GPS, left) & simulated (right) horizontal displacements

Lawrence Livermore National Laboratory

Conclusions on simulations of recent South Napa earthquakes

- Initial comparison of observed and simulated seismograms looks very encouraging
 - Dreger source model looks good for frequencies < 1 Hz
 - 3D paths effects are important
 - Paths to the south are not well fit by 3D model, possibly due to basin-edge effect
- Modeling M_W 3.9 aftershock shows that the 3D model can fit quite well, but may need adjustments
- Fits for paths crossing San Pablo Bay are well fit for both mainshock and aftershock

Further work is needed ...

- Investigate different rupture models, including variations/ perturbations of Doug's model
 - Are there other rupture models to consider?
 - e.g. from strong motion, geodetic, teleseismic data?
- Simulate more aftershocks to evaluate 3D model
 - Re-visit aftershock mechanisms
- Make more quantitative measures of goodness-of-fit
 - e.g. waveform misfit, PGV, Sa, etc...
- Compare geodetic displacements (obs. & sim.)
- Consider computing 3D Greens functions for source inversion for local strong motion and static displacements
- Improve USGS 3D model through waveform tomography

What about seismic hazard at LLNL ...

- "Livermore earthquakes" on Greenville Fault caused \$10M damage (\$11 M total)
 - January 1980 M 5.8 and 5.6 earthquakes
 - Simulations of these events with modern tools, validation would be very interesting
- Could LLNL benefit from EEW?
 - How could warning time be reduced?
 - Seismic network improvements
 - Notification alert through cell phones

Jan. 24 1980 Livermore ruptured toward

Lawrence Livermore National Laboratory

